

TOPOLOGY - III, EXERCISE SHEET 11

Exercise 1. Examples of CW complexes.

Recall the definition of a CW complex and show that the following topological spaces exhibit a CW complex structure:

- (1) S^n
- (2) All graphs Γ .
- (3) $(T^2)^{\#n}$
- (4) $(\mathbb{RP}^2)^{\#n}$
- (5) \mathbb{RP}^n
- (6) \mathbb{CP}^n .

Exercise 2. Simplicial Homology in $\mathbb{Z}/2\mathbb{Z}$ - coefficients.

Recall from exercise 9 of sheet 3 that calculating the simplicial homology of surfaces was computationally challenging, before we had tools like the Mayer-Vietoris sequence. However, computing homology in $\mathbb{Z}/2\mathbb{Z}$ coefficients makes computations much simpler in general.

Using the Δ -complex structure from exercise 9 of sheet 3, compute the simplicial homology of \mathbb{RP}^2 and T^2 with $\mathbb{Z}/2\mathbb{Z}$ coefficients.

Exercise 3. Universal Coefficient theorem

Use the universal coefficient theorem in homology to calculate all homology groups of the following spaces with coefficients in the prescribed abelian groups:

- (1) $H_*(S^n; G)$ for all abelian groups G .
- (2) $H_*(T^2; G)$ for $G = \mathbb{Q}, \mathbb{R}, \mathbb{Z}/2\mathbb{Z}$.
- (3) $H_*(\mathbb{RP}^2; G)$ for $G = \mathbb{Q}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}$.

Exercise 4. Independent nowhere vanishing vector fields on S^3 via the quaternions.

Recall that the real vector space \mathbb{R}^4 can be endowed with the structure of an associative algebra called the quaternion algebra Q . Here $Q := \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$ and $1, i, j, k$ follow the relations as in the quaternion group Q_8 . Show that multiplication by i, j, k can be used to define three nowhere vanishing vector fields on S^3 , which are linearly independent at every point on S^3 .